Sheikh Abdur Raheem Ali

1. Find $\phi(318)$

First, we find the prime factorization of 318.

$$
318=53 \cdot 3 \cdot 2
$$

Secondly, we apply the formula to find $\phi(318)$

$$
\phi(318)=(53-1) \cdot 53^{1-1} \cdot(3-1) \cdot 3^{1-1} \cdot(2-1) \cdot 2^{1-1}=52 \cdot 2=104
$$

Therefore, $\phi(318)=104$
2. Find $\operatorname{gcd}(72,11)=d$ and find $c_{1}, c_{2} \in \mathbb{Z}$ s.t $d=72 c_{1}+11 c_{2}$

Solution: by successive use of the division algorithm we get:

$$
\begin{array}{rrrrr}
& 6 \\
1 1 \longdiv { 7 2 } & 6 \longdiv { 1 1 } & 5 \longdiv { 6 } & 1 \longdiv { 5 } \\
\frac{66}{6} & & \frac{6}{5} & \frac{5}{1} & \frac{5}{0}
\end{array}
$$

Hence, $\operatorname{gcd}(72,11)=1$ because 1 is the last nonzero remainder.
Using the next to last division, we can express d as a linear combination of 72 and 11 . We find that:

$$
1=6-5
$$

The second division tells us that $5=11-6$
The first division tells us that $6=72-11(6)$
So $1=(72-11(6))-(11-(72-11(6)))$, which simplifies to

$$
1=2 \cdot 72-13 \cdot 11
$$

Hence, $c_{1}=2, c_{2}=-13$
3. Solve $X^{8}=1$ in planet Z_{15}

First, we find the prime factorization of 15 .

$$
15=3 \cdot 5
$$

Second, we find $\phi(15)$

$$
\phi(15)=2 \cdot 4=8
$$

Third, we find every number $X \in Z_{15}$ s.t $\operatorname{gcd}(X, 15)=1$

$$
X=\{1,2,4,7,8,11,13,14\}
$$

This is the solution to $X^{8}=1, X \in Z_{15}$

